DNA restriction-modification systems mediate plasmid maintenance.

نویسندگان

  • S Kulakauskas
  • A Lubys
  • S D Ehrlich
چکیده

Two plasmid-carried restriction-modification (R-M) systems, EcoRI (from pMB1 of Escherichia coli) and Bsp6I (from pXH13 of Bacillus sp. strain RFL6), enhance plasmid segregational stability in E. coli and Bacillus subtilis, respectively. Inactivation of the endonuclease or the presence of the methylase in trans abolish the stabilizing activity of the R-M systems. We propose that R-M systems mediate plasmid segregational stability by postsegregational killing of plasmid-free cells. Plasmid-encoded methyltransferase modifies host DNA and thus prevents its digestion by the restriction endonuclease. Plasmid loss entails degradation and/or dilution of the methylase during cell growth and appearance of unmethylated sites in the chromosome. Double-strand breaks, introduced at these sites by the endonuclease, eventually cause the death of the plasmid-free cells. Contribution to plasmid stability is a previously unrecognized biological role of the R-M systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modular organization of related Archaeal plasmids encoding different restriction-modification systems in Methanobacterium thermoformicicum.

Nucleotide sequence comparison of the related 13513-bp plasmid pFV1 and the 11014-bp plasmid pFZ1 from the thermophilic archaeon Methanobacterium thermoformicicum THF and Z-245, respectively, revealed a homologous, approximately 8.2 kb backbone structure that is interrupted by plasmid-specific elements. Various highly conserved palindromic structures and an ORF that could code for a NTP-binding...

متن کامل

Restriction-Modification Systems as Minimal Forms of Life

A restriction (R) endonuclease recognizes a specific DNA sequence and introduces a double-strand break (Fig. 1A). A cognate modification (M) enzyme methylates the same sequence and thereby protects it from cleavage. Together, these two enzymes form a restriction-modification system. The genes encoding the restriction endonuclease and the cognate modification enzyme are often tightly linked and ...

متن کامل

A rapid and efficient method for cloning genes of type II restriction-modification systems by use of a killer plasmid.

We present a method for cloning restriction-modification (R-M) systems that is based on the use of a lethal plasmid (pKILLER). The plasmid carries a functional gene for a restriction endonuclease having the same DNA specificity as the R-M system of interest. The first step is the standard preparation of a representative, plasmid-borne genomic library. Then this library is transformed with the k...

متن کامل

Enhanced transformation efficiency of recalcitrant Bacillus cereus and Bacillus weihenstephanensis isolates upon in vitro methylation of plasmid DNA.

Digestion patterns of chromosomal DNAs of Bacillus cereus and Bacillus weihenstephanensis strains suggest that Sau3AI-type restriction modification systems are widely present among the isolates tested. In vitro methylation of plasmid DNA was used to enhance poor plasmid transfer upon electroporation to recalcitrant strains that carry Sau3AI restriction barriers.

متن کامل

Mobility of a restriction-modification system revealed by its genetic contexts in three hosts.

The flow of genes among prokaryotes plays a fundamental role in shaping bacterial evolution, and restriction-modification systems can modulate this flow. However, relatively little is known about the distribution and movement of restriction-modification systems themselves. We have isolated and characterized the genes for restriction-modification systems from two species of Salmonella, S. enteri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 177 12  شماره 

صفحات  -

تاریخ انتشار 1995